首页> 外文OA文献 >Isospectral Property of Hamiltonian Boundary Value Methods (HBVMs) and their connections with Runge-Kutta collocation methods
【2h】

Isospectral Property of Hamiltonian Boundary Value Methods (HBVMs) and their connections with Runge-Kutta collocation methods

机译:哈密​​顿边值问题(HBVms)和H∞的等谱特性   他们与Runge-Kutta搭配方法的关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One main issue, when numerically integrating autonomous Hamiltonian systems,is the long-term conservation of some of its invariants, among which theHamiltonian function itself. Recently, a new class of methods, namedHamiltonian Boundary Value Methods (HBVMs) has been introduced and analysed,which are able to exactly preserve polynomial Hamiltonians of arbitrarily highdegree. We here study a further property of such methods, namely that ofhaving, when cast as a Runge-Kutta method, a matrix of the Butcher tableau withthe same spectrum (apart from the zero eigenvalues) as that of thecorresponding Gauss-Legendre method, independently of the considered abscissae.Consequently, HBVMs are always perfectly A-stable methods. This, in turn,allows to elucidate the existing connections with classical Runge-Kuttacollocation methods.
机译:在数值上整合自治哈密顿系统时,一个主要问题是其某些不变量的长期守恒,其中包括哈密顿函数本身。最近,引入并分析了一种新的方法,称为哈密顿边界值方法(HBVM),它们能够精确地保留任意高阶多项式哈密顿量。我们在此研究此类方法的进一步特性,即当将其转换为Runge-Kutta方法时,具有与相应的高斯-勒根德方法具有相同光谱(除了零本征值)的Butcher Tableau矩阵,而与因此,HBVM始终是完美的A稳定方法。反过来,这也可以用经典的Runge-Kuttacollocation方法阐明现有的联系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号